
A Delaunay Refinement Algorithm for Quality

2-Dimensional Mesh Generation

Jim Ruppert 1

Report RNR-94-002, January 1994

NAS Systems Division

Applied Research Branch

NASA Ames Research Center, Mail Stop T27A-1

Moffett Field, CA 94035

Abstract We present a simple new algorithm for triangulating

polygons and planar straightline graphs. It provides "shape" and

"size" guarantees:

• All triangles have a bounded aspect ratio.

• The number of triangles is within a constant factor of optimal.

Such "quality" triangulations are desirable as meshes for the fi-

nite element method, in which the running time generally increases

with the number of triangles, and where the convergence and sta-

bility may be hurt by very skinny triangles. The technique we

use--successive refinement of a Delaunay triangulation--extends a

mesh generation technique of Chew by allowing triangles of varying

sizes. Compared with previous quadtree-based algorithms for qual-

ity mesh generation, the Delaunay refinement approach is much

simpler and generally produces meshes with fewer triangles. We

also discuss an implementation of the algorithm and evaluate its

performance on a variety of inputs.

1The author is an employee of Computer Sciences Corporation. This

work was supported through NASA Contract NAS 2-12961. E-mail address:
ruppert@nas.nasa.gov. Much of this work was completed while the author was
a student in the Computer Science Division at the University of California at
Berkeley, supported by funds from NSF PYI Grant CCR-90-58840. A portion
of this work was done while the author was at Hewlett-Packard Laboratories,

Palo Alto, CA.

1 Introduction

Many applications in computational geometry, graphics, solid modeling, nu-

merical simulation and other areas require complicated geometric objects

to be decomposed into simpler pieces for further processing. For instance,

in the finite element method, a planar domain is divided into a mesh of

elements, typically triangles or quadrilaterals. Differential equations repre-

senting some physical property such as heat distribution or airflow are then

approximated using functions that are piecewise polynomial within each ele-

ment. The running times of these algorithms generally depend on the size of

the decomposition (the number of elements), hence we seek decompositions

of small size. Furthermore, in many applications, the numerical stability and

convergence are affected by the shapes of the elements; excessively "long and

skinny" elements can lead to undesirable behavior.

In this paper we focus on the decomposition of 2-dimensional objects

such as polygons into triangles. We will refer to this problem both as mesh

generation and triangulation; it is also called unstructured grid generation.

A triangulation must be a simplicial complex, that is, the intersection of

any two triangles is either a common edge, a common vertex, or the empty

set. Quality mesh generation describes techniques that offer a guarantee on

some measure of shape, such as all triangles non-obtuse, or all with bounded

aspect ratio. The aspect ratio of a triangle is the length of the longest edge

divided by the length of the shortest altitude. A fairly general measure of

triangle shape is the minimum angle a, since this gives a bound of r - 2a on

maximum angle and guarantees an aspect ratio between I 1 2•i-i-_-d[and [hTh--d[. We
allow triangulations to contain Steiner points--vertices of the mesh that are

not vertices of the input--because in general they are necessary for achieving

shape bounds (see Figure 1, for example). A mesh satisfying a certain shape

bound is said to be size-optimal if the number of triangles is within a constant

factor of the minimum number possible in any triangulation of the given input

that meets the same shape bound.

The first algorithm to give a shape guarantee was due to Baker, Grosse

and Rafferty [1]. They gave a technique for producing a non-obtuse trian-

gulation of polygons, in which all angles are at most 90 ° . In addition, the

smallest angle is at least 13 ° . (Of course, this is only possible if all angles in

the input are at least 13°.) Together, these bounds guarantee an aspect ratio

of at most 4.6. The algorithm places a uniform square grid over the polygon,

2

(a) Typical input PSLG and bounding box. (b) Typical triangulation without added
Sterner points. Some small angles
are unavoidable.

(c) Uniform mesh with minimum
angle 22.5 degrees.

(d) Output of Delaunay refinement
algorithm with minimum angle 20 degrees,

Figure 1: Sample input planar straightline graph (PSLG), and several triangula-
tions of it.

with grid spacing determined by the smallest feature present in the polygon.

(Roughly speaking, the smallest feature is determined either by the pair of

closest vertices, or by the closest vertex-edge pair, where the edge does not

contain the vertex.) Since the smallest feature determines the mesh density

throughout the polygon, the number of triangles can be very large.

Bern, Eppstein and Gilbert gave the first mesh generation algorithm with

both shape and size guarantees [3]. They show how to triangulate polygons

so that every triangle has aspect ratio at most 5. In addition, their analysis

shows that the mesh is size-optimal. One of the key ideas in the algorithm

is to replace the uniform grid of [1] with a quadtree, which is a recursive

subdivision into squares of varying sizes. This yields large triangles in ar-

eas of large features. By keeping the quadtree balanced, aspect ratios are

bounded in the output. Melissaratos and Souvaine give some extensions to

the quadtree algorithm [12]. Mitchell and Vavasis show an extension of the

quadtree technique to 3D [14]. They give an algorithm that uses octrees to

produce size-optimal, bounded aspect ratio triangulations of polyhedra.

All the above techniques use grids or quadtrees. A quite different tech-

nique for quality mesh generation is Delaunay refinement, so-called because

a Delaunay triangulation is maintained, and some criterion is used to succes-

sively pick new points to add to it. Chew [5] presented a Delannay refinement

algorithm that triangulates a given polygon into a mesh in which all angles

are between 30 ° and 120 ° . The algorithm produces uniform meshes, meaning

that all triangles are roughly the same size. The output mesh is size-optimal

(to within a constant factor) amongst all uniform meshes. However, there are

inputs for which a uniform mesh has many more triangles than are necessary,

see Figure 1(c), for instance.

In this paper, we extend Chew's work by giving an algorithm to triangu-

late planar straightline graphs (PSLGs) such that all triangles in the output

have angles between a and 7r - 2a. Here a is a parameter that can be cho-

sen between 0 ° and 20 °. The triangles will vary in size, and the mesh will

be size optimal to within a constant factor (that depends on a). PSLGs in-

clude polygons, polygons with holes, and complexes (objects made of multiple

polygons); dangling edges and isolated vertices are also allowed, as shown in

Figure l(a).

Theoretically speaking, our algorithm essentially matches the PSLG al-

gorithms of [12] and [3](modified as mentioned in [2]), but it is distinguished

from them in a number of ways: (1) The Delaunay refinement approach is

fundamentally different from the quadtree techniques. (2) It is much simpler.

With fewer special case constructions, it is easier to implement. (3) It gener-

ally produces fewer triangles in practice. (4) It is "parameterized': the user

can ask for the "best" mesh with a given number of triangles. In this way, the

algorithm takes advantage of the inherent mesh size/shape tradeoff. (5) The

output mesh has no favored orientation. In contrast, grid or quadtree based

meshes produce many mesh edges aligned with the coordinate axes. Such

alignment may affect subsequent computation. (6) Delaunay refinement can

be modified to generate a mesh unique to the input, independent of the ori-

entation of the input. (This assumes careful handling of degeneracies, and

elimination of the bounding box, as described in Section 5.)

A few words about the input to the algorithm: The input can be any

planar straightline graph (PSLG), with dangling edges and isolated points

allowed (see Figure l(a)). As shown in the figure, the algorithm will tri-

angulate a larger region, out to an enclosing box. To get a triangulation

of a particular region, say the interior of a polygon, exterior triangles can

be removed. (To maintain the size optimality guarantee in this case, the

algorithm must be modified slightly, as discussed in Section 5.)

Though the algorithm is based on the Delaunay triangulation, the con-

strained Delaunay triangulation [11],[4], might be a worthwhile alternative.

We discuss this briefly in Section 5, and Chew discusses its use in a related

mesh generation algorithm [6].

The remainder of this paper is organized as follows. In the next section

we present the algorithm. Then we show that it halts and outputs a valid

triangulation satisfying the minimum angle bound. We define the local fea-

ture size at each point in the input, and bound the output size in terms

of it. Then we show that every triangle is within a constant factor of the

largest possible at that point, which proves size-optimality. To balance the

theoretical results, we then discuss some issues that arise in implementing

the algorithm, and describe our own implementation. Through a variety of

examples, we evaluate its performance in terms of mesh size and shape.

Large portions of the work reported here have appeared elsewhere in

preliminary form [16], [17], [18].

5

2 The Delaunay Refinement Algorithm

The basic idea of the algorithm is to maintain a triangulation, making local

improvements in order to remove the skinny triangles. Each improvement

involves adding a new vertex to the triangulation and retriangulating. To pick

good locations for these new vertices, we use the following fact of elementary

geometry:

Fact 1 If triangle T = abc has Lbca = 8, and p is the circumcenter of T,

then Lbpa = 20. (See Figure 6.)

This fact can be proved by considering the angles of the triangles pab, pbc

and pca. The circumcenter of a triangle is the center of the unique circle

through the three vertices of the triangle. As described below, we will gen-

erally be adding vertices that are circumcenters, though when such locations

are unsuitable, we will instead place new vertices on the input segments.

The particular triangulation we maintain is a Delaunay triangulation,

which has been extensively discussed in the literature (see, e.g., [15] or [9]).

We recall the definition: given a finite set of points in the plane, three

points contribute a triangle to the Delaunay triangulation if the circumcircle

through those points contains no other point in its interior. This defini-

tion produces a unique triangulation, assuming the appropriate handling of

degeneracies (4 or more co-circular points).

Edges of the input PSLG will be referred to as segments to distinguish

them from the edges of the Delaunay triangulation that is maintained. Also,

a vertex is a vertex of the input or of the growing Delaunay triangulation,

whereas a point is any point in the plane. During the course of the algorithm,

we will maintain a set V of vertices (initialized to the vertices in the input)

and a set S of segments (initially those in the input). Vertices are added

to the Delaunay triangulation :DT(V) for two reasons: to improve triangle

shape, and to insure that all input segments are present in Tr/-(V) (as the

union of one or more Delaunay edges).

The two basic operations in the algorithm are to split a segment by adding

a vertex at its midpoint, and to split a triangle with a vertex at its circum-

center. In each case, the new vertex is added to V; when a segment is split,

it is replaced in S by its two subsegments.

For a segment s, the circle with s as a diameter is referred to as its

diametral circle, and we say that a vertex encroaches upon segment s if it

I circle of s 1

s2_'_f

Figure 2: Input PSLG shown in solid lines, Delaunay triangulation of its vertices

shown dotted. This is not a valid triangulation of the PSLG because sl is not

present as a Delaunay edge. Vertex a "encroaches upon" both segments sl and
$2.

lies within the diametral circle of s. Figure 2 illustrates this: the vertex

a encroaches upon both segments sl and s2 (only sl's diametral circle is

shown). A segment that is encroached upon may or may not be present in

the Delaunay triangulation; it is easy to show that any segment not present

in the Delaunay triangulation is encroached upon by some vertex.

To simplify the description and analysis of the algorithm, we assume for

now that all angles of the input PSLG are at least 90 °. In Section 5, this
restriction will be removed.

Any triangle with an angle below a is called skinny. In essence, the

algorithm says to split skinny triangles, unless the triangle's circumcenter

would encroach upon some input segment, in which case split the segment

instead. Here is the algorithm in detail, including subroutines for the two

basic operations:

subroutine SplitTri(triangle t)

Add circumcenter of t to V, updating _T(V)

subroutine SplitSeg(segment 3)

Add midpoint of s to V, updating Z)T(V)

Remove s from S, add its two halves sl and s2 to S

Algorithm DelaunayRefine

INPUT: planar straightline graph X;

desired minimum angle bound

OUTPUT: triangulation of X, with all angles _> G.
Initialize :

add a bounding square B to X:

compute extremes of X: zmin, ymin, zmax, ymax

let span(X) = max(zmaz-xmin, ymaz-ymin)

let B be the square of side 3 x span(X), centered on X

add the four boundary segments of B to X

let segment list S = edges of X
let vertex list V ffi vertices of X

compute initial Delaunay triangulation DT(V)

repeat :

while any segment _ is encroached upon:

SplitSeg(s)

let t be (any) skinny triangle (rain angle < a)

let p be t's circumcenter

if p encroaches upon any segments s,,..._sk then

for i=1 to k:

SplitSeg(si)

else

SplitTri(t) (, adds p to V *)

endif

until no segments encroached upon, and no angles < a

output current Delaunay triangulation _r2-(V)

Figures 3 and 4 show the execution of the algorithm on a simple polygonal

example. For clarity, no bounding box is used. In each picture, the input

is shown in thick lines, the current Delaunay triangulation is overlayed in

thin lines. (The observant reader might notice a slight enhancement in the

algorithm used in the example: if a segment s is encroached upon by a vertex

on another segment, s does not have to be split as long as it appears in the

triangulation, and no skinny triangles are present. For instance, the vertex

8

P

(a) Input polygon (bounding box
not used in this example).

(b) Delaunay triangulation of input vertioes.
Note that segment s is not a Delaunay edge,
because it is crossed by edge pq,

(c) Segment s "split" at midpoint, into sl and s2.
Shaded triangle has smallest angle, (d) If circumcenter p were added, it would
5.9 degrees. Cross indicates its circumcenter, encroach upon segments s3 and s4.

Figure 3: Execution of the algorithm on a simple example. For clarity, bounding
box not used.

9

(e) 2 segments were split at q and r.
Shaded triangle now has minimum angle, (1)New minimum angle 11.6 degrees.
9.8 degrees, and will be split.

(g) Result alter allowing execution to
continue until minimum angle is (h) Optionally, external triangles can
at least 25 degrees, be removed.

Figure 4: Continuation of example. In this case, minimum angle a = 25° .

10

added between (b) and (c) encroaches

split.)

In the next section, we show that the

practice, larger values can be chosen, up

upon two segments that are never

algorithm halts for any a < 20 °. (In

to a _ 30 ° .) Upon termination, all

triangles will have aspect ratios at most I,-_1, since all angles smaller than

a will have been removed. Furthermore, all input segments will be present in

the output (as the union of one or more Delaunay edges), since any segments

missing from the Delaunay triangulation are encroached upon, and hence get

split until they are present. Note that the algorithm allows skinny triangles

to be split in any order. We discuss good orderings and other implementation
issues in Section 6.

3 Output Size

In this section we give an upper bound on the number of triangles in the

output. The bound depends upon the local feature size of the input. At

every point in the mesh, the vertex spacing will be close to the local feature

size. In the next section, we will show that the local feature size is indeed

the desired spacing, since it yields meshes within a constant factor of the

optimal size.

Definition 1 Given a PSLG X, The local feature size at a point p,

lfsx(p), or simply lfs(p), is the radius of the smallest disk centered at p

that intersects 2 non-incident vertices or segments of X.

Figure 5 illustrates the definition of lfs(), the radius of the disk Di being

lfs(pi). Note D3 in particular: a smaller disk would intersect 2 segments, but
they are incident to each other.

For a given input X, lfs(p) is defined for all points p in the plane, and

the entire function, which we refer to as lfs(X), is continuous. If lfs(p) is

interpreted as an elevation at p, then lfs(X) is a "not-too-steep" surface

above the plane. The following lemma shows that it has a Lipschitz condition

of 1, i.e. the slope in any direction is at most 1.

Lemma 1 Given any PSLG X, and any two points p and q in the plane,

lfs(q) < lfs(p) + dist(p, q),

where dist(p, q) is the Euclidean distance between p and q.

11

/..

.............
Figure 5: Local feature size at several points. Radius of disk Di is lfs(pl).

Proof." The disk D of radius r = Ifs(p) centered at p must intersect 2

non-incident portions of X, by definition of lfs(): The disk D' of radius

r' = r + dist(p,q) centered at q contains D and hence intersects the same

portions of X. So Ifs(q) < r'. Putting this together, we have

lfs(q) < r'= r + dist(p,q)= Ifs(p) + dist(p,q).

The next lemma is the crux of the mesh size analysis. It shows that as

each vertex is added, it is at the center of a "vertex-free" circle of radius at

least a constant fraction of the local feature size. Thus the density of added

vertices is bounded by the geometry of the input. We emphasize that adding

vertices does not change the lfs() function, since it is determined by the

input.

12

c

Figure 6: Lemma 2 Case 1: p added as circumcenter of triangle T with small

angle t9 < c_.

Lemma 2 For fixed constants CT and Cs, specified below, the following

statements hold:

• At initialization, for each input vertex p, the distance to its nearest

neighbor vertex is at least lfs(p).

When a point p is chosen as the circumcenter of a skinny triangle,

the distance to the nearest vertex is at least t/,(p) (p may be added to
CT "

the triangulation, or may be rejected because it encroaches upon some

segment.)

• When a vertex p is added as the midpoint of a split segment, the distance

to its nearest neighbor vertex is at least
CS "

Proof." For any input vertex p, the distance to its nearest neighbor vertex

is at least lfs(p), by definition of the lfs() function. This is the base case

of the lemma. For vertices added later, we assume the lemma is true for all

previous vertices.

Case 1: We first consider the case where p is the circumcenter of a

skinny triangle T. Since p is at the center of T's Delaunay circle, its nearest

neighbors are the vertices of T (see Figure 6), at a distance of r. Assume

13

the verticesof T are a, b, c, with the smallest angle/9 at c. Then the shortest

edge of T is from a to b. Call its length d. Without loss of generality, assume

a was added after b (or that both were in the input). We will use the fact

that a and b are close together to bound lfs(a) in each of several cases, which

in turn will bound lfs(p).

Case l(a): a was a vertex of the input. Then so was b, so lfs(a) < d.

Case l(b): a was added as a circumcenter of some triangle with cir-

cumradius r' < d (since b was outside that triangle's circumcircle). We

can apply this lemma to a, yielding lfs(a) < r'CT <_ dCT.

Case l(c): a was the midpoint of a segment that was split. Applying

this lemma to a now yields lfs(a) < dCs, since b was outside a's vertex-
free circle.

So we have lfs(a) < dCs, assuming we have the condition [Cs > CT > l J,
which we will be able to satisfy below. By Fact 1, £apb = 2/9, so simple

geometry gives d = 2r sin 0. Lemma 1 gives

lfs(p) < Ifs(a) + r

using our bound for Ifs(a) we have

lfs(p) <dCs + r

or, since 0 < a,

= 2rCs sin 0 + r

r > lfs(p)
- l+2Cssina

So we get the desired bound on r as long as we can satisfy the condition

[CT > 1 + 2Cssina].

Case 2: We now consider the case where a vertex p is added to split a

segment s. Segment a is split because some vertex or circumcenter a is inside

s's diametral circle, which has radius r. (See Figure 7.) We have two cases
for a:

Case 2(a): a lies on some segment t, which cannot be incident to s, since

we are assuming that all angles in the input PSLG are at least 90 °. (Any

14

C

Figure 7: Lemma 2 Case 2: p added to split segment s which is encroached
upon by a.

segment incident to s makes a larger angle, and hence would be completely

outside the diametral circle.) So there are two non-incident segments, one

containing p, the other containing a, within distance r of each other. Thus

Ifs(p) < r. Above, we have assumed the condition Cs > 1, so this case is
done.

Case 2(b): a was a circumcenter, proposed for addition to the Delaunay

triangulation, but rejected because it lay inside the diametral circle of s.

Suppose it was the center of circle C' with radius/. By applying this lemma

to a, we know that r' > _ Also, band c, theendpoints of S, must be
-- G'T

outside the Delaunay circle C', so r' _< x/_r. Lemma 1 gives

lfs(p) _< tfs(a) +

< r'CT + r

<__VZ2rCT + r

or

- 1 + V_CT

This yields the correct bound on r, provided that [Cs > 1 + v/2CT l

It can be checked that the 3 boxed conditions can be simultaneously

satisfied for any c_ < arcsin _ ,._ 20.7 °. For instance, CT = a+2sin_I_2Vt_ sin a '

15

Cs = 1,_ will work. For a = 10 °, we can choose CT = 9..8, and
l-2_/2sina

Co = 5.

Since CT < Cs, the lemma shows that when a vertex p is added, no other

vertex is within distance _ of p. The following theorem shows that vertices
Cs

added later cannot get much closer to p.

Theorem 1 Given a vertexp of the output mesh, its nearest neighbor vertex
, . l]J(p}

q is at a distance at teasz cs+]"

Proof: Lemma 2 handles all but the case when q was added after p, in which

case we can apply the lemma to q and get

lfs(q)
dist(p, q) >

Cs

Lemma 1 gives a bound for lfs(q) in terms of Ifs(p) and q's distance from p,

sO

lfs(p) - dist(p, q)
dist(p, q) >

Cs

rearranging finishes the proof: dist(p,q) > _ •
-- Cs+l

The next theorem uses an area argument to yield a bound on the number

of vertices. Intuitively, a region of small local feature size requires small

triangles, i.e. the vertex spacing should be proportional to the local feature

size. Thus the triangle density in the mesh is proportional to the inverse of

the square of the local feature size. So we will "charge" the cost for each

vertex to the local feature size around it.

Theorem 2 The number of vertices in the output mesh is at most

where B is the region enclosed by the bounding square, and C1 is a constant

to be specified.

16

Proof: The previoustheorem saysthat eachvertex p in the mesh is at the

center of an open disk of radius _ that contains no other vertex. Halving

the radii gives non-intersecting C_isks: let Dp be the open disk of radius
It

r v = _ centered on p. Since at least one-fourth of each D v is contained
_ (,C_.ll

in me bounding square B, we get a lower bound for the integral by summing

its value in the disks D v for every p in the vertex set V:

fB 1 1

By Lemma 1, the maximum lfs() attainable in D v is lfs(p) + rp, which gives

a bound for fD_:

JDp lfs_x)dx > area(Dp) 1- max::en,,{lfs2(x)}

1

> area(Dr)(Ifs(p) + rv)2

Using area(Dp) = rrp 2, plugging in for rp, and cancelling yields

fD 1 7r
, tf:(x) dx > (2Cs + 3) 2

Substituting back in for the entire integral,

fB 1 I_Eifs2(x______dx> 7r- 4 p_v (2Cs + 3) 2

=4(2Cs+3) 2 _l
pEV

Since the summation merely counts the number of vertices in the output

mesh, the theorem holds if we choose the constant C1 > 4(2Cs+3)2 •

17

4 Size-Optimality

Our goal in this section is to show that any triangulation produced by the

Delaunay refinement algorithm is size-optimal, meaning that the number

of triangles is within a constant factor of the minimum number possible.

We first state and prove some properties that any bounded aspect ratio

triangulation must have, and then use these properties to show that even

the optimal triangulation is not too much better than the output of the

Delaunay refinement algorithm. The following properties of bounded aspect

ratio triangulations are seemingly obvious, but a number of technical details

are required to state and prove them precisely:

• Small input features will be surrounded by proportionally small trian-

gles.

• Nearby triangles have similar sizes.

• The size variation between distant triangles depends on their distance.

The basic idea would be to show that in an optimal mesh, triangle sizes

must vary slowly, proportional to the local feature size measure. Since this

was the case for Delannay refinement meshes as well, we could show that

they are within a constant factor of optimal. The difficulty in using this

approach directly is that triangle size is a step function: size is constant

within each triangle, but large discontinuities are possible between triangles,

especially near mesh vertices of high degree. To cope with this, we must

define precisely what we mean by "triangle size", and show that though it

is a step function, it is reasonably well-behaved. With a series of lemmas,

we bound the maximum triangle size at an arbitrary point, and show that

triangle sizes within a Delaunay refinement mesh are within a constant factor

of the largest possible.

The analysis in this section is similar to that given by Mitchell and Vava-

sis for their 3D algorithm [14]. A basic notion in their proof is that of a

"characteristic length function", which defines the "triangle size" at every

point within the triangulation:

Definition 2 If a point p is contained in a triangulation 7" of input PSLG

X, then we say the edge length at p, ely,x(p), or simply el(p), is the length

of the longest edge among all triangles of 7" containing p.

18

Figure 8: Triangles crossed by the segment from p to q are divided into "fans".

We shall now prove some properties about this function within bounded

aspect ratio triangulations. For the remainder of this section, we assume that

all triangles have a minimum angle bound of _, which guarantees all aspect

By considering the shared edge between tworatios are at most A = sin_"

triangles, we have the following:

Fact 2 If p and q lie in the interiors of distinct triangles Tp and Tq, which
share an edge, then _ < A._l(p) -

Repeated use of this fact gives the following lemma about points in arbi-

trary triangles:

Lemma 3 If p and q lie in the interiors of triangles Tp and Tq, respectively,
then

el(q) <_ C2 . el(p) + C3. dist(p,q)

where C2 and C3 are constants to be specified.

Proof: Consider the sequence of triangles crossed by the line segment from

p to q, as shown in Figure 8. (Here we are assuming that the triangulation

fills a convex region, so that the segment stays within the triangulation.)

Any vertex on the segment is treated as though it were to the "right" of the

directed segment from p to q. Label any vertices shared by more than two

consecutive triangles pi, p2,'" ". The "zigzag" edges connecting successive pi's

19

Figure 9: Since line segment pq crosses edges e and f, it must cross e' or f'.

divide the triangles into "fans" around each pi, indicated by the bold arcs in
27r

Figure 8. Since at most [-g-] triangles fit around a vertex, each fan contains

at most K = [_J triangles, except the first and last, which may contain
K + 1. We consider two different cases, depending upon the number k of

triangles between p and q, including Tp and Tq.

Case 1: k _< K + 3: Using k applications of Fact 2, we see that the lemma

holds as long as C2 >_ A u+3 and C3 _> 0.

Case 2: k > K + 3: Since zigzag edges are separated by at most K

triangles, there exists some zigzag edge pipi+l that is flanked by two triangles,

neither of which contains p or q. Consider the closest such edge to q. In

Figure 8, this is the edge p3P4. Figure 9 shows edge pipi+l and its two

flanking triangles. We now show that the length of the segment pq is at least

half of an altitude of one of these triangles. Let e and f be the two outer

edges crossed by pq, as shown. Let z be the midpoint of pipi+l, and construct

e' and f' through x and parallel to e and f, as shown. Since pq crosses e and

f, it must cross either e' or f'. If it crosses e', then it is longer than half the

altitude h from edge e to vertex pi+l, i.e. dist(p,q) > 7" By the definition

of aspect ratio, the longest edge of the triangle containing e' has length at

most A.h. Thus for any point p' within that triangle we can use K + 1

applications of Fact 2 to show that el(q) <_ A u+lel(p'). It then follows that

2O

x x x

•
!

(a) (b) (c)

Figure 10: Triangle size along :ry if z is a mesh vertex.

x x'-pl'

Y

Figure 11" Triangle size along zy if z is not a mesh vertex.

el(q) < A1"+2h < 2AK+2dist(p, q). The lemma holds for C3 = 2A z_+_, since

el(p) > 0, C2 > 0. The case where f' is crossed by pq is handled similarly,

within the same bound. The choice of C2 > A/_'+3, C3 >__2A K+2 satisfies all

the conditions. •

Lemma 3 gives a bound on how fast edge lengths can change in a bounded

aspect ratio triangulation. The following lemma shows that there must be

small triangles near small input features.

Lemma 4 Let z and y be points (not necessarily endpoints) of non-incident

input segments. Let d be the distance between z and y. Then, in any triangu-

lation with aspect ratios bounded by A, there is a point p on the line segment

connecting x and y with el(p) <_ 2d. A.

Proof: See Figure 10(a).

21

Figure 12: Points x and y on input segments determine edge length el(p) at

some point p along xy, and local feature size lfs(q).

Case 1: The easy case is when x or y is a vertex of the triangulation.

Without loss of generality, suppose x is a vertex. If there is a triangulation

edge at x along the line segment xy (see Figure 10(b)), then that edge has

length at most d. For any point p in the interior of the edge, el(p) < d. A.

If the line segment xy is in the interior of some triangle T near x (see Fig-

ure 10(c)), then the minimum altitude of T is no longer than T's intersection

with xy, so for any point p on xy interior to T, el(p) <_ d. A.

Case 2: This case, where x is in the interior of an edge of the triangulation,

is illustrated in Figure 11. Let x t be the endpoint nearest x, and consider all

triangles incident to x r that intersect the line segment xy. Let pl,p2,.., be

the intersections of xy with the edges of these triangles, as shown. Finally,

on the edge containing p,, label the endpoint closest to pi as P'i- Let j be the

smallest index such that p_ -_ x'. Such a j exists, because eventually xy will

reach an edge not incident to x r, for instance the edge containing y. By an

argument similar to that used in Case 2 of the previous lemma, we see that

the minimum altitude of T, the triangle containing pj-I and Pi is at most 2d.

Then for any point p in the interior of the line segment Pj-lPi, el(p) < 2d. A.

Next, we use the preceding lemmas to relate the edge length function

el() to our local feature size measure lfs(). Recall that we are assuming 7-

is any triangulation in which all angles are at least a.

22

Lemma 5 At any point q in the interior of a triangle ofT, el(q) < C41fs(q),
where Ca is a constant to be specified.

Proof." By definition, lfs(q) is the radius v, determined by two points x and y

on non-incident segments of the input (see Figure 12). From Lemma 4, there

must be some point p along xy with el(p) < 2. dist(x, y). A. Since we always

have dist(x, y) < 2r, el(p) < 4r. A. Using dist(p, q) < r and Lemma 3,

el(q) < el(p) + C2" el(p) + C3. dist(p,q)

< (C2 + 1). el(p) + C3.r

< (C2 + 1)- 4r- A + C3" r

_< [(C2 + i).4A + C31 .r

< [(C2 + i).4A + C3]. lfs(q)

Choosing C4 > (C2 + 1) • 4A + C3 concludes the proof.

We can now state and prove the major result of this section: that the

mesh output by the Delaunay refinement algorithm is size-optimal to within

a constant factor. First we recall the situation: the input is a planar straight-

line graph X with all angles at least 90 °, _ _< 20 ° is the minimum angle bound

for the output, which guarantees all triangles have aspect ratio at most 2
sinc_ "

The algorithm triangulates the region inside B(X), a larger bounding box

of X, and the optimality is with respect to any triangulation of B(X) with

minimum angle bound a. (The 90 ° input restriction, and the requirement

that the mesh triangulates B(X), will be removed in the next section.)

Theorem 3 Given c_ < 20 °, and input X, suppose 7" is any triangulation of

X with minimum angle bound a. There is a constant C_, such that if T has

N triangles, then the Delaunay refinement triangulation 7"9 has No < C_,.N

triangles. Letting 7- be the triangulation with fewest possible triangles shows

that TD is within a factor C_ of optimal.

Proof: Theorem 2 bounds the number of vertices in the Delaunay refinement

triangulation To. In any triangulation, the number of triangles is at most

23

twice the numberof vertices (true by Euler's relation, see [15], p. 19). Thus

'T D has

/B 1No < 2C1)Ifs2(x---------:dx

triangles. By Lemma 5 this is

< C1 "C42/B el_x)dx

where the edge-length function el() is with respect to T. (Strictly speaking,

Lemma 5 does not apply to edges of the triangulation, but since they have

measure 0, they do not contribute to the integral.) We can instead sum the

integrals over each triangle T C T:

= Cl " C42T_e__/T el_dX

In each triangle T, el() is constant, just the length of the longest edge. The

area of T is at most V_el2(), which occurs if T is equilateral. So for T we4

have

Substituting back in,

No < C1" C42 --4- _ 1
TET"

We have _re_r 1 = N, since the summation just counts the number of trian-

gles in T. Thus the theorem holds for C_, = Cl • C4 _ 45 •
4 "

The constant factor Ca depends on the choice of a, but not on X, i.e.

the Delaunay refinement algorithm is optimal on every input, not just in the

worst case. We discuss C_ more in Section 6.

5 Corner-Lopping and Riemann Sheets

Two issues must be resolved so that the algorithm produces size-optimal

bounded aspect ratio triangulations for general 2-dimensional inputs. First,

24

Figure 13: Do the two "arms" of the polygon determine a small feature at p?

we must deal with small input angles reasonably (recall that we made the

unreasonable assumption that all angles were at least 90°!). The second issue

is subtler, and relates to our definition of local feature size in non-convex

polygons: in Figure 13, do the two "arms" of the polygon generate a small

feature at p? Our definition says they do, and produces small triangles around

p accordingly. This could be suboptimal if only an interior triangulation of

the polygon is desired. Fortunately, previous researchers have dealt with

both of these concerns, and we can adapt their solutions to our algorithm.

These modifications may increase the size of the mesh, but by at most a
constant factor.

We handle small angles by "lopping off" the sharp corners during a pre-

processing step. For the time being, we continue to assume that all input

angles are at least a, the desired minimum output angle. Below, we will

mention the case of smaller input angles.

Any input vertex p with a small angle is "shielded" by committing in

advance to a specific triangulation around p. Previous approaches surrounded

each vertex with a circle [3], or with a cube in 3D [14]. We will sketch how

to do this with a circle here. First, for every input vertex p, the local feature

size lfs(p) is computed. For an input PSLG of size n, this can easily be

done in O(n 2) time by computing all vertex-vertex and vertex-edge pairwise

distances. At any vertex p with an angle smaller than 90 °, we will intersect

25

shield edge
spoke edge

Figure 14: "Lopping off" sharp corners with a shielding circle (input segments

in bold).

a circle with the input edges, as shown in Figure 14. The radius of the circle

will be t/'3-_, so that circles around different vertices do not intersect or get

too close. Angles at p greater than 2a are divided so as to be between a and

2a, introducing shield edges around the circle, and spoke edges from p to the

circle. These edges, and new vertices, are henceforth considered as part of a

modified input PSLG X', and will appear in the output mesh. This reduces

the local feature size in X _ compared with X, but only by a constant factor

that depends on a.

In this modified input, all angles outside the shielding circles will be at

least 90 ° . Within the shielding circles, our hope is to use the triangles shown

in Figure 14 as the output triangles around p. If we disallow the splitting

of such triangles, then no vertices will be added within the shielding circle,

but still the shield edges may get split, as shown in Figure 15(a). When the

algorithm terminates, each shield edge will be split into at most a constant

number of pieces, since the local feature size along the edge is proportional

to the edge length.

We now have two ways of dealing with split shield edges. Following [14],

we place edges between the split vertices and p, as shown in Figure 15(b).

(In fact, these will be present as the Delaunay edges.) Since each shield edge

is split a constant number of times, the minimum angle in the output mesh

26

__linput or spoke edges shield edge

vertices added

(a) by algorithm

(b)

(c)

Method 1

Method 2

Figure 15: Fixing shield edges that get split.

will be within a constant factor of a, while retaining the constant factor

optimality for the mesh size.

Next we sketch a more complicated construction that can avoid splitting

the smallest input angle at all. As shown in [3], a construction like that in

Figure 15(c) will work for polygon inputs. The idea is that since each shield

edge is split at most a constant number of times, we can use a constant

number of layers to "merge" the triangles together.

This construction does not work directly for PSLG inputs, since the lay-

ers of triangles require vertices to be added to a spoke edge, and the tri-

angulations on either side of the spoke may not agree along the spoke. A

construction as shown in Figure 16 will work for a < 10 °. From Section 3,

the value of Cs tells us that each shield edge will be split into at most 8

pieces, so at most 3 layers of triangles will be necessary. Roughly speak-

ing, we will "strengthen" our shielding circle by replacing it with 3 layers of

triangles, each of a fixed width. The figure shows only the outer layer, of

width d, which depends on a. The triangulation within each layer depends

on how the shield edge is split. The two most difficult cases are shown in

Figure 16. If a shield edge spanning an angle of a is split into 8 pieces, then

we use "merging" triangles that are skinny in the radial direction, whereas

an unsplit shield edge spanning an angle close to 2a requires a triangle that

is skinny in the circumferential direction. Simple calculations show that d

can be chosen to balance these two cases so that all angles will be at least

_. The other cases and inner layers are similar, and easier to handle. It is

27

P

!
t

|

t

', shield
edges

Figure 16: Construction for PSLGs.

not clear how to perform this construction for values of a much larger than

10 °. The problem is that the value of Cs grows, and hence it cannot be

guaranteed that the shield edges will be split into a small number of pieces.

Another issue is the handling of input angles less than the desired minimum

a. For polygons with very small input angles, a construction like that of

Figure 15(c) can be used to produce a triangulation in which all angles are

greater than a, except for the smaller input angles (which obviously cannot

be removed). For PSLGs, it appears quite difficult to handle input angles

below a in such a graceful fashion.

In practice, these intricate constructions do not seem to be necessary in

order to handle small input angles, as discussed in Section 6.

The second issue is illustrated in Figure 13. We assumed the input was

a planar straightline graph, and produced a triangulation that extended out

to a larger surrounding box. If only the interior of a polygon is to be trian-

gulated, then we would not consider the clearance between the two "arms"

of the polygon in Figure 13 as a small feature. In particular, the local fea-

ture size at p should be r, rather than d, as our definition states. Following

[14], we modify the definition to use the geodesic distance to the 2 nearest

non-incident portions of the input. The geodesic distance is measured along

the shortest path that stays within the region to be triangulated (e.g. the

interior of the polygon). The algorithm is modified to use the constrained

28

Delaunay triangulation (CDT) [11],[4]. The CDT can be computed with the

Riemann sheet technique of Seidel [20]. This corresponds to Mitchell and

Vavasis' use of Riemann volumes for octree mesh generation [14]. Chew has

recently described a related mesh generation algorithm that uses the CDT
[6].

Using the CDT, one can develop a modified Delaunay refinement algo-

rithm to produce meshes that are unique (for a given a) and independent of

the orientation of the input. The CDT allows the algorithm to work with-

out a bounding box; for uniqueness it is also necessary to specify the order

in which skinny triangles and encroached edges are split, for instance one

could always split the triangle with the largest circumcircle, breaking ties ac-

cording to vertex indices. In the case of degeneracies (4 or more co-circular

points), the Delaunay triangulation is not uniquely defined; this can also be

disambiguated with vertex indices.

6 Implementation and Discussion

The pseudocode algorithm given in Section 2, which we call the basic al-

gorithm, could be implemented in many ways. In our case, there were two

main goals: to allow interactive experimentation with the algorithm, and to

produce sample outputs for evaluating its performance. In this section, we

discuss some general implementation issues, and describe our own implemen-

tation, as well as a variety of possible modifications and enhancements to the

basic algorithm. We will also evaluate the algorithm's practical performance

with respect to mesh size and shape.

The basic algorithm was quite simple to implement, requiring only a small

amount of work beyond the computation of a Delaunay triangulation. The

corner-lopping and Riemann sheet modifications mentioned in the previous

section were not implemented. Though corner-lopping was required for the

theoretical analysis in the case of small input angles, it would require a large

implementation effort. Instead, we used a simpler approach that works very

well in practice. The implementation runs reliably on many examples, and

produces meshes in which the number of triangles seems to be quite reason-

able. In practice, the algorithm easily achieves a minimum angle bound of

20 ° , and can be run longer if desired, though it rarely improves the minimum

angle much above 30 ° . Figure 17 shows an example of its output, given as

29

Figure 17: Triangulation produced by the Delaunay refinement algorithm for a

sample input, shown in bold. Minimum angle _ 20 °.

3O

Figure 18: Triangulation of the boundary of Lake Superior. Minimum output
angle _ 15°.

input an outline of the letter "A" and a minimum angle bound a = 20 °.

Many of the vertices along the outline were added by the algorithm.

An important choice to be made in any implementation is the Delaunay

triangulation algorithm to build upon. There are incremental algorithms

where points are added one at a time to a growing triangulation, e.g. [10],

and all-at-once algorithms such as the sweepline algorithm of Fortune [9].

An incremental algorithm seems the logical choice, since our algorithm re-

fines the triangulation by adding points. (Though an all-at-once algorithm

could be used for the initial triangulation, and perhaps for splitting segments,

since it is possible that many segments may simultaneously be encroached

31

upon.) In our case,efficiencywasnot an issue,becausewemerely neededto
interactively experimentwith the algorithm on relatively small meshes.An
implementationof the sweeplinealgorithm wasavailable,sowehaveusedit
throughout, evenfor incrementaladdition of a singlepoint to the triangula-
tion. For meshes with several hundred vertices, a full recomputation of the

Delaunay triangulation takes less than a second, which is sufficient for inter-

active use. However, the algorithm would be excessively slow for practical

usage on large inputs, so we do not report any timing measurements.

We have not analyzed the asymptotic running time of the Delaunay re-

finement algorithm in detail. The worst-case running time for incremental

Delaunay triangulation is O(M_), where M is the output size. In practice,

such algorithms usually run much faster [10]. Much of the time is typically

taken up locating the triangle containing the added point. For non-input

vertices, this is simplified in our algorithm by starting at the skinny triangle

or encroached upon segment being split.

Figure 18 shows another output of the algorithm, given as input an ap-

proximate outline of Lake Superior, including several islands. Since the

boundary was represented by roughly equally spaced points, most of the

points added by the algorithm were interior points (in the lake, or between

the lake and the bounding box). We note that the input contains an angle

close to 15 °, which was not a problem even though the corner-lopping step

was not done.

The basic algorithm of Section 2 says that any skinny triangle may be

split, though it seems like a good idea to split the triangle with the globally

minimum angle. In this way, the algorithm is parameterizable, meaning

that it can be halted just as soon as all angles are "large enough". This

modification comes at a slight cost, however, since skinny triangles must be

maintained in a priority queue to allow the globally minimum angle to be

efficiently determined. If we choose to split an arbitrary skinny triangle, then

only a list is needed.

The detection of "encroached upon" segments (those containing a point

in their diametral circle) can be done efficiently by checking local criteria

during each update of the Delaunay triangulation. A segment is encroached

upon if either:

1. It is not present as a Delaunay edge (e.g. Sl in Figure 2), or

2. It is present, but opposite an obtuse angle in a Delaunay triangle (e.g.

32

s2 in Figure 2).

Though the basic algorithm specifies a square bounding box 3 times as

large as the input, any constant multiple will work. For clarity in our ex-

amples, we have used a smaller bounding box. The bounding box has both

a theoretical and a practical purpose. Whereas a polygon clearly has an

interior, a PSLG input may have dangling edges, and it is not always clear

exactly what region is to be triangulated. The convex hull of the PSLG is a

logical candidate, but then an input vertex just inside the hull could gener-

ate a "small feature" that is not really present in the input. The bounding

box gives an unambiguous region to be triangulated, without reducing the

local feature size by more than a constant factor. An axis-aligned bounding

square also improves the algorithm's robustness, since splitting an edge of

the box gives a midpoint which is truly collinear with the endpoints. Oth-

erwise, if roundoff were to occur, then the midpoint could fall inside the

edge, causing a very skinny Delaunay triangle to form between the midpoint

and tile endpoints. The calculation of such a triangle's circumcenter is very
ill-conditioned.

Since the base algorithm of Section 2 is so simple, it is easy to experiment

with alternative criteria for splitting triangles. For instance, some applica-

tions, such as error adaptive solvers, have a maximum desired triangle size.

Figure 1(c) shows how to achieve this as well as a minimum angle bound:

we change the criterion to split triangles that are skinny or large, where

large means having a circumradius larger than a fixed bound. One can also

exclude certain triangles from being split, for instance, in Section 5 triangles

were not split if their small angle was part of the input. In Section 2 we also

mentioned a situation in which an encroached upon segment need not be split

if the encroaching vertex lies on some other input segment. Finally, the user

may wish to eliminate large angles, but allow small angles. As discussed in

[3], this can generally be done with fewer triangles than in the no-small-angle

case. Unfortunately, we cannot take advantage of this fact by modifying the

basic algorithm to split triangles with large angles, because every triangle

with an angle above r - 2a also has an angle below a, and the behavior of

the modified algorithm approximates that of the original.

Another variation to the basic algorithm is to split triangles at points

other than their circumcenters, and to split segments at points other than

their midpoints. For instance, in Figure 6 we saw that the angle opposite ab

33

doublesif it is movedto the circumcenter.Theanglewould increasefurther if
p were closer to ab, though possibly at the expense of other triangles. We have

not explored this approach, but perhaps it could increase the global minimum

angle more rapidly, and reduce the overall number of triangles. Below we

discuss how splitting segments at non-midpoints can help in handling small

input angles. It would be nice to extend the size-optimality proof to cover

these different split points. One would need to show that the proof holds for

split points "near" circumcenters and midpoints. We have not done this, but

it seems possible, perhaps with weaker optimality constants and minimum

angle bounds.

Mesh Size

Next we take several different approaches to evaluating the size of meshes

produced by the Delaunay refinement algorithm. We argue that the algo-

rithm performs significantly better than other algorithms with mesh shape

guarantees, and somewhat worse than a human might do. We also argue

that the analysis of Section 4 gives a gross overestimate of the algorithm's

behavior in practice.

Upon close examination of Figures 17 and 18, one sees many places where

moving a vertex could improve triangle shapes, or where a vertex could be

removed without decreasing the minimum angle. We might estimate these

triangulations to be within a factor of 2-5 times the minimum possible size

for the given angle bound. Thus the "true" size-optimality constant for the

Delannay refinement algorithm lies somewhere between 2 and the value of

Ca of Section 4. Plugging a minimum angle bound of tr = 20* into the

inequalities given in Section 4, we get a bound Ca _ 1.81 x 1025. Though

this is the first explicitly stated optimality constant for a bounded aspect

ratio triangulation algorithm, the value is clearly meaningless as a practical

guarantee. Examination of the analysis shows much slack that might be

tightened, for example a constant of A 2K+6, with A _ 6, K _ 4, that we

suspect can be replaced by 2 K or A 2, but even a reduction of 10 or 15 orders

of magnitude would not yield a useful value for Ca. One would really like a

stronger proof technique.

We can make a non-rigorous argument about output size using the con-

stant Cs of Section 4. It bounds the density of points along input segments,

and its value indicates that at most 5 "layers" of triangles will appear be-

34

f_-st thne
all angles
exceed 30.00

20 degr_s

Overal_

minimum / lli'
angle) I1

in degrees moo / v

50 lO0 150 200

Total number of vertices

Figure 19: Progress of minimum angle during a typical run.

tween 2 nearby input vertices. In Figure 17, we see that short segments are

not broken up at all, and so there is usually only 1 layer. This contrasts with

the algorithm in [3], in which each input vertex must be isolated within a 5-

by-5 grid of quadtree squares, yielding at least 2-3 layers of triangles between

any two vertices. For instance, whereas the Delaunay refinement algorithm

would triangulate a square using 2 triangles, the quadtree algorithm would

need 18 triangles, or more, depending on the orientation of the square.

Additional evidence concerning the behavior of the Delaunay refinement

algorithm comes from Figure 19, which charts the overall minimum angle

during a lengthy run on a simple input with about 15 vertices. We see the

minimum rise to about 30 ° and then level off, except for frequent downward

spikes when a small angle gets divided in two, then quickly improved. The

optimality proof says that eventually, no spike will drop below the dotted line

(here, for _ = 20°), which would be far to the right of the plotted portion of

the graph. The arrow points out when the algorithm would actually halt for
this case.

The reason for the non-monotone behavior of the minimum angle in Fig-

ure 19 is shown in Figure 20. Delaunay triangle T1 has the minimum angle,

and T2 has a slightly larger angle. The splitting of TI causes the small angle

in T2 to be cut, greatly reducing the global minimum.

Next we consider a class of inputs that can be used to benchmark a

quality mesh generation algorithm's performance at grading, or adapting to

very small input features, using as few well-shaped triangles as possible. The

35

q

Figure 20: This example shows that splitting a skinny triangle can decrease

the global minimum angle. T1 and T2 are two triangles in a larger Delaunay

triangulation. The cross indicates Tl's circumcenter p, which happens to lie

within T2's circumcircle. If T1 is split at p, the dotted edge pq may cut the small

angle at q in half.

d

Figure 21: Input for "grading" benchmark.

36

Figure 22: Mesh grading test case with minimum angle 20 degrees. Manual

construction on the left, Delaunay refinement output on the right.

input consists of two squares, a unit square centered within a larger square

of side d, where d can vary. From Theorem 3 of Section 4, we expect that

any size-optimal quality mesh generation algorithm will produce a mesh in

which the number of vertices is proportional to the logarithm of d. We

are interested in the constants of proportionality, and we will compare the

Delaunay refinement algorithm against an "optimal" (or at least very good)

mesh created manually.

The manual mesh construction is shown on the left in Figure 22, with

the unit square in the center. To each edge of the unit square we attach

an isosceles triangle with a single 20 ° angle opposite the edge of the square,

creating a four-pointed star. To this we add four more triangles to fill out

a square, rotated 45 ° from the original. This construction is repeated out

to the desired size, though only certain values of d are achievable. For com-

parison, the output of the Delaunay refinement algorithm is shown on the

right for the same test case. Given a minimum angle bound of 20 °, meshes

produced by the Delaunay refinement algorithm have about 4 times as many

vertices as does the manual construction, as shown by the graph in Figure 23.

The values for the Delaunay refinement algorithm were computed from four

experimental runs, and the performance of the manual case is derived from

37

Number of

Vertices

ioo.oo"i...................................i..................i.........
80.00 ...i. ,;.............. ,

! Delaunay _:

'
.........

o.oo0 i i i

1 10 100 I000

Bounding Box Size

Figure 23: Comparison of mesh sizes for the algorithms shown in Figure 22.

cos 35 o
the ratio _ _ 4.72 of sizes of successive squares in the construction, since

each square adds four vertices.

The two methods may be even a bit closer in performance, since the com-

parison is performed on those values of d best for the manual construction,

and because the Delaunay refinement generally does a bit better than the

minimum angle bound (it achieved between 23 ° and 27 ° for the four cases in

Figure 23). A further question is whether the manual construction is indeed

the optimal strategy for this test case. (Asymptotically, it appears that a

construction with three-way symmetry allows more rapid grading: start with

an equilateral triangle, add an isosceles triangle with a 20 ° angle opposite

each edge, add three more triangles to fill out a larger equilateral triangle,

repeat.) If indeed the manual construction is close to optimal, then we have

further evidence that there is much slack in the bound for Co, since that

bound essentially depends on the possibility of much more rapid grading

than seems possible even in a manual construction.

Small Input Angles

Next we take up the issue of small angles in the input. In Sections 2-4, we

assumed that all input angles were at least 90 ° (and at most 270°). This was

necessary in order to prove the termination and size bounds of the algorithm.

In Section 5, we showed how this restriction could be removed by using a

preprocessing step called "corner-lopping" to isolate small angles. Though

the corner-lopping served a theoretical purpose, there are several objections

38

q r

P

q - - - _ " r
s

Figure 24: This shows why small input angles can be a problem for the basic

algorithm: p encroaches upon qr, which is split at s, which encroaches upon qp,
which is split ...

to using it in practice: implementing it would require a large effort, and it

might be overkill, producing more triangles than are really necessary. Here

we argue that with a simple modification to the basic Delaunay refinement

algorithm, small input angles rarely cause problems in practice, and that the

few remaining problematic cases can be handled by adding a simplified ver-

sion of corner-lopping (though we have not been able to prove size-optimality

for this modified algorithm).

Figure 24 shows why small input angles can be a problem. Angle pqr is

less than 45 °, and p "encroaches" upon qr, since it is within the diametral

circle of qr. Hence, segment qr is split, by adding a vertex at its midpoint.

This new vertex then encroaches upon segment pq. After splitting pq, we

repeat the initial situation, at a smaller scale. As shown on the right, this

process of splitting encroached segments can continue indefinitely. (No such

examples are known with angles greater than 45°.) This problem is caused

by the definition of encroachment, and can usually be avoided in practice

by modifying the definition to exclude cases where the encroaching vertex

lies on another input segment. However, this does not handle the case of

a high-degree vertex, due to the interaction between edges incident to the

vertex (this problem was described in a slightly different setting by Saalfield

[19]).

In practice, to handle the high-degree case, and cases with very small

39

-. _ First split at midpoint

-/- int(_'_ction with concentric
shell near_st midpoint

Figure 25: Modified segment splitting using concentric shells.

input angles, we use a method that attempts to simulate corner-lopping.
This is a heuristic that uses "concentric circular shells" around each input

vertex. The idea is that instead of splitting all segments at their midpoints,

which can cause splits to bounce back and forth between segments as in

Figure 24, we make the split points "line up" with each other. The approach

is illustrated in Figure 25. We imagine that each input vertex is surrounded

by concentric circles, each double the radius of the one inside it. The first time

a segment is split, the midpoint is used, but from then on, any subsegment

with an input vertex as an endpoint is split at the intersection of the segment

with the circle nearest the midpoint of the segment.

Specifically, choose D to be a fixed, arbitrary constant (such as 0.01), and

let the ith shell have radius D2 i, for all integers i. Suppose we must split

a subsegment pq, where p is an input vertex. Let the length of pq be 2d.

Then the midpoint of pq has the non-integral shell number k = log2_. We

round off k to the nearest integer k', and place the split point at a distance

d' = D2 k' from p along pq.

The result of this modified strategy is shown in Figure 26. On the left

is an input with many small angles. Given this input, the basic algorithm

of Section 2 would loop endlessly, adding split points closer and closer to

the vertex at the center of the input. The result of executing the modified

algorithm is shown on the right. Note that vertices near the central vertex

arrange themselves along the concentric circles, and that the radius of the

4O

Figure 26: Input with many spokes, and triangulation using "concentric shells"
instead of midpoints.

smallest circle is not much smaller than the shortest input edge. The smallest

angle in such a mesh is determined by the smallest input angle, but if desired,

the algorithm can achieve the usual minimum bound for all non-input angles.

We have not obtained a size-optimality proof for the algorithm under

this modified splitting strategy. However, we can show that split points on

concentric shells are "close" to the midpoint (between _ and _ of the2

way along the segment). Since the size-optimality proof did not rely on the

split points being precisely at the midpoints, it might be extendible to the

concentric shells splitting strategy.

7 Generalization to Three Dimensions

It would be very desirable to generalize the Delaunay refinement algorithm to

perform 3D tetrahedral meshing of polyhedra and polyhedral complexes. In

this regard, we are somewhat pessimistic: the Delaunay refinement algorithm

extends fairly readily to 3D, but its bounded aspect ratio guarantee does not.

It seems that significant new ideas are necessary in order to get bounded

aspect ratio tetrahedra using a Delaunay triangulation based approach.

41

Figure 27: A "sliver" triangle in 2D must have a circumcircle much larger than

its shortest edge.

Figure 28: "Sliver" tetrahedron: 4 points spaced around the equator of a sphere,

with d raised slightly.

42

Roughly speaking, the discrepancy between 2D and 3D is the following: in

2D, an "evenly spaced" point set (ie. no large "gaps") will have a Delaunay

triangulation with no skinny triangles, but this does not hold true in 3D.

Figure 27 shows why: a skinny triangle, or sliver, will have a circumcircle

much larger than its shortest edge. Such a circumcircle forms a large "gap"

not containing any points. In 3D, however, tetrahedra can have roughly

equal-length edges, a reasonably-sized circumsphere, and yet be arbitrarily

skinny, as shown in Figure 28: four vertices spaced equally around the equator

of a sphere, with d raised slightly to a latitude of ¢ above the equator.

These flat sliver tetrahedra appear quite often in 3D Delaunay triangula-

tions. The difficulties of avoiding them or removing them have been discussed

in a number of papers, including [8], [13], [7].

8 Conclusion

We have presented a new Delaunay refinement algorithm for bounded aspect

ratio triangulation of planar straightline graphs. The algorithm comes with

theoretical guarantees on its behavior, yet it is simple enough to be easily

implemented, and is likely to find use in practical applications.

There are several directions for further work. Foremost, can the De-

launay refinement algorithm be generalized to work for 3D triangulation of

polyhedra? The Delaunay refinement algorithm is well-suited to applica-

tions involving adaptive analyses that increase mesh density in regions of

large error. For adaptive or dynamic problems, mesh reduction, or coarsen-

ing, is also useful--is there a Delaunay based criterion that indicates good

vertices to delete from the mesh? There are several questions regarding the

size-optimality constants: Can the analysis be significantly improved? Can

tight lower bounds be proved for bounded-aspect ratio triangulation, even
for specific inputs?

9 Acknowledgements

I would particularly like to thank Raimund Seidel, for many productive dis-

cussions. Helpful suggestions were provided by Balas Natarajan, Marshall

Bern, Eric Barszcz, and two anonymous referees. The development of the al-

43

gorithm was aided by the Voronoi diagram implementation of Steve Fortune

(available via netlib).

References

[1] B. Baker, E. Grosse, and C.S. Rafferty. Nonobtuse triangulation of

polygons. Disc. and Comput. Geom., 3:147-168, 1988.

[2] M. Bern and D. Eppstein. Mesh generation and optimal triangulation.
In D.Z. Du and F.K. Hwang, editors, Computing in Euclidean Geometry.

World Scientific, 1992.

[3] M. Bern, D. Eppstein, and J.R. Gilbert. Provably good mesh genera-
tion. In Proceedings of the 31st Annual Symposium on Foundations of

Computer Science, pages 231-241. IEEE, 1990. To appear in J. Comp.

System Science.

[4] L.P. Chew. Constrained Delaunay triangulation. Algorithmica, 4:97-

108, 1989.

[5] L.P. Chew. Guaranteed-quality triangular meshes. Technical report,

Cornell University, 1989. No. TR-89-983.

[6] L.P. Chew. Guaranteed-quality mesh generation for curved surfaces. In

Proceedings of the Ninth Annual Symposium on Computational Geome-

try, pages 274-280. ACM, 1993.

[7] T. Dey, C. Bajaj, and K. Sugihara. On good triangulations in three

dimensions. In Proceedings of the A CM Symposium on Solid Modeling

Foundations and CAD/CAM Applications, 1991.

[8] D. Field. Implementing Watson's algorithm in three dimensions. In Pro-

ceedings of the Second Annual Symposium on Computational Geometry,

pages 246-259. ACM, 1986.

[9] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica,

2:153-174, 1987.

44

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

L.J. Guibas and J. Stolfi. Primitives for the manipulation of general sub-

divisions and the computation of Voronoi diagrams. ACM Transactions

on Graphics, 4:74-123, 1985.

D.T. Lee and A. Lin. Generalized Delaunay triangulation for planar

graphs. Discrete Comput. Geom., 1:201-217, 1986.

E. Melissaratos and D. Souvaine. Coping with inconsistencies: A new

approach to produce quality triangulations of polygonal domains with

holes. In Proceedings of the Eighth Annual Symposium on Computational

Geometry, pages 202-211. ACM, 1992.

S. Meshkat, J. Ruppert, and H. Li. Three-dimensional unstructured

grid generation based on Delaunay tetrahedrization. In Proceedings of

the 3rd International Conference on Numerical Grid Generation, pages

841-851, June 1991.

S.A. Mitchell and S.A. Vavasis. Quality mesh generation in three di-

mensions. In Proceedings of the Eighth Annual Symposium on Compu-

tational Geometry, pages 212-221. ACM, 1992. Full version in Cornell

Tech. Report TR 92-1267, Feb. 1992.

F. P. Preparata and M. I. Shamos. Computational Geometry - an In-

troduction. Springer-Verlag, New York, 1985.

J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh

generation. Technical Report UCB/CSD 92/694, Computer Science Di-

vision, University of California, Berkeley, 570 Evans Hall, U.C. Berkeley,

CA 94720, June 1992.

J. Ruppert. Results on Triangulation and High Quality Mesh Genera-

tion. PhD thesis, University of California at Berkeley, 1992.

J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh

generation. In Proceedings of the Fourth Annual Symposium on Discrete

Algorithms, pages 83-92. ACM-SIAM, January 1993.

A. Saalfield. Delaunay edge refinements. In Third Canadian Conference

on Computational Geometry, pages 33-36, Vancouver, 1991.

45

[20] R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams

with obstacles. Technical Report 260, Inst. for Information Processing,

Graz, Austria, 1988.

46

